Skip to content

Module API.auth

Sub-modules

Variables

osm_auth

Functions

admin_required

def admin_required(
    user: API.auth.AuthUser = Depends(login_required)
)

get_optional_user

def get_optional_user(
    access_token: str = Header(None)
) -> API.auth.AuthUser

get_osm_auth_user

def get_osm_auth_user(
    access_token
)

get_user_from_db

def get_user_from_db(
    osm_id: int
)

login_required

def login_required(
    access_token: str = Header(PydanticUndefined)
)

staff_required

def staff_required(
    user: API.auth.AuthUser = Depends(login_required)
)

Classes

AuthUser

class AuthUser(
    /,
    **data: 'Any'
)

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/

A base class for creating Pydantic models.

Attributes: class_vars: The names of the class variables defined on the model. private_attributes: Metadata about the private attributes of the model. signature: The synthesized __init__ [Signature][inspect.Signature] of the model.

__pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
__pydantic_core_schema__: The core schema of the model.
__pydantic_custom_init__: Whether the model has a custom `__init__` function.
__pydantic_decorators__: Metadata containing the decorators defined on the model.
    This replaces `Model.__validators__` and `Model.__root_validators__` from Pydantic V1.
__pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to
    __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
__pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
__pydantic_post_init__: The name of the post-init method for the model, if defined.
__pydantic_root_model__: Whether the model is a [`RootModel`][pydantic.root_model.RootModel].
__pydantic_serializer__: The `pydantic-core` `SchemaSerializer` used to dump instances of the model.
__pydantic_validator__: The `pydantic-core` `SchemaValidator` used to validate instances of the model.

__pydantic_extra__: A dictionary containing extra values, if [`extra`][pydantic.config.ConfigDict.extra]
    is set to `'allow'`.
__pydantic_fields_set__: The names of fields explicitly set during instantiation.
__pydantic_private__: Values of private attributes set on the model instance.

Ancestors (in MRO)

  • pydantic.main.BaseModel

Class variables

model_computed_fields
model_config
model_fields

Static methods

construct

def construct(
    _fields_set: 'set[str] | None' = None,
    **values: 'Any'
) -> 'Self'

from_orm

def from_orm(
    obj: 'Any'
) -> 'Self'

model_construct

def model_construct(
    _fields_set: 'set[str] | None' = None,
    **values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Args: _fields_set: A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used. values: Trusted or pre-validated data dictionary.

Returns: A new instance of the Model class with validated data.

model_json_schema

def model_json_schema(
    by_alias: 'bool' = True,
    ref_template: 'str' = '#/$defs/{model}',
    schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
    mode: 'JsonSchemaMode' = 'validation'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.

Args: by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications mode: The mode in which to generate the schema.

Returns: The JSON schema for the given model class.

model_parametrized_name

def model_parametrized_name(
    params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args: params: Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns: String representing the new class where params are passed to cls as type variables.

Raises: TypeError: Raised when trying to generate concrete names for non-generic models.

model_rebuild

def model_rebuild(
    *,
    force: 'bool' = False,
    raise_errors: 'bool' = True,
    _parent_namespace_depth: 'int' = 2,
    _types_namespace: 'dict[str, Any] | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args: force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns: Returns None if the schema is already "complete" and rebuilding was not required. If rebuilding was required, returns True if rebuilding was successful, otherwise False.

model_validate

def model_validate(
    obj: 'Any',
    *,
    strict: 'bool | None' = None,
    from_attributes: 'bool | None' = None,
    context: 'Any | None' = None
) -> 'Self'
Validate a pydantic model instance.

Args: obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises: ValidationError: If the object could not be validated.

Returns: The validated model instance.

model_validate_json

def model_validate_json(
    json_data: 'str | bytes | bytearray',
    *,
    strict: 'bool | None' = None,
    context: 'Any | None' = None
) -> 'Self'
Usage docs: https://docs.pydantic.dev/2.9/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args: json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns: The validated Pydantic model.

Raises: ValidationError: If json_data is not a JSON string or the object could not be validated.

model_validate_strings

def model_validate_strings(
    obj: 'Any',
    *,
    strict: 'bool | None' = None,
    context: 'Any | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.

Args: obj: The object containing string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns: The validated Pydantic model.

parse_file

def parse_file(
    path: 'str | Path',
    *,
    content_type: 'str | None' = None,
    encoding: 'str' = 'utf8',
    proto: 'DeprecatedParseProtocol | None' = None,
    allow_pickle: 'bool' = False
) -> 'Self'

parse_obj

def parse_obj(
    obj: 'Any'
) -> 'Self'

parse_raw

def parse_raw(
    b: 'str | bytes',
    *,
    content_type: 'str | None' = None,
    encoding: 'str' = 'utf8',
    proto: 'DeprecatedParseProtocol | None' = None,
    allow_pickle: 'bool' = False
) -> 'Self'

schema

def schema(
    by_alias: 'bool' = True,
    ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'

schema_json

def schema_json(
    *,
    by_alias: 'bool' = True,
    ref_template: 'str' = '#/$defs/{model}',
    **dumps_kwargs: 'Any'
) -> 'str'

update_forward_refs

def update_forward_refs(
    **localns: 'Any'
) -> 'None'

validate

def validate(
    value: 'Any'
) -> 'Self'

Instance variables

model_extra
Get extra fields set during validation.

Returns: A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields_set
Returns the set of fields that have been explicitly set on this model instance.

Returns: A set of strings representing the fields that have been set, i.e. that were not filled from defaults.

Methods

copy

def copy(
    self,
    *,
    include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
    exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
    update: 'Dict[str, Any] | None' = None,
    deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.

!!! warning "Deprecated" This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)

Args: include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns: A copy of the model with included, excluded and updated fields as specified.

dict

def dict(
    self,
    *,
    include: 'IncEx | None' = None,
    exclude: 'IncEx | None' = None,
    by_alias: 'bool' = False,
    exclude_unset: 'bool' = False,
    exclude_defaults: 'bool' = False,
    exclude_none: 'bool' = False
) -> 'Dict[str, Any]'

json

def json(
    self,
    *,
    include: 'IncEx | None' = None,
    exclude: 'IncEx | None' = None,
    by_alias: 'bool' = False,
    exclude_unset: 'bool' = False,
    exclude_defaults: 'bool' = False,
    exclude_none: 'bool' = False,
    encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
    models_as_dict: 'bool' = PydanticUndefined,
    **dumps_kwargs: 'Any'
) -> 'str'

model_copy

def model_copy(
    self,
    *,
    update: 'dict[str, Any] | None' = None,
    deep: 'bool' = False
) -> 'Self'
Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#model_copy

Returns a copy of the model.

Args: update: Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. deep: Set to True to make a deep copy of the model.

Returns: New model instance.

model_dump

def model_dump(
    self,
    *,
    mode: "Literal['json', 'python'] | str" = 'python',
    include: 'IncEx | None' = None,
    exclude: 'IncEx | None' = None,
    context: 'Any | None' = None,
    by_alias: 'bool' = False,
    exclude_unset: 'bool' = False,
    exclude_defaults: 'bool' = False,
    exclude_none: 'bool' = False,
    round_trip: 'bool' = False,
    warnings: "bool | Literal['none', 'warn', 'error']" = True,
    serialize_as_any: 'bool' = False
) -> 'dict[str, Any]'
Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args: mode: The mode in which to_python should run. If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. include: A set of fields to include in the output. exclude: A set of fields to exclude from the output. context: Additional context to pass to the serializer. by_alias: Whether to use the field's alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError]. serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns: A dictionary representation of the model.

model_dump_json

def model_dump_json(
    self,
    *,
    indent: 'int | None' = None,
    include: 'IncEx | None' = None,
    exclude: 'IncEx | None' = None,
    context: 'Any | None' = None,
    by_alias: 'bool' = False,
    exclude_unset: 'bool' = False,
    exclude_defaults: 'bool' = False,
    exclude_none: 'bool' = False,
    round_trip: 'bool' = False,
    warnings: "bool | Literal['none', 'warn', 'error']" = True,
    serialize_as_any: 'bool' = False
) -> 'str'
Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic's to_json method.

Args: indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. context: Additional context to pass to the serializer. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError]. serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns: A JSON string representation of the model.

model_post_init

def model_post_init(
    self,
    _BaseModel__context: 'Any'
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

UserRole

class UserRole(
    *args,
    **kwds
)

Create a collection of name/value pairs.

Example enumeration:

class Color(Enum): ... RED = 1 ... BLUE = 2 ... GREEN = 3

Access them by:

  • attribute access::

Color.RED

  • value lookup:

Color(1)

  • name lookup:

Color['RED']

Enumerations can be iterated over, and know how many members they have:

len(Color) 3

list(Color) [, , ]

Methods can be added to enumerations, and members can have their own attributes -- see the documentation for details.

Ancestors (in MRO)

  • enum.Enum

Class variables

ADMIN
GUEST
STAFF
name
value