Skip to content

Module API.auth.routers

Variables

router

Functions

callback

def callback(
    request: starlette.requests.Request
)
Performs token exchange between OpenStreetMap and Raw Data API

Core will use Oauth secret key from configuration while deserializing token, provides access token that can be used for authorized endpoints.

Parameters: None

Returns: - access_token (string)

create_user

def create_user(
    params: API.auth.routers.User,
    user_data: API.auth.AuthUser = Depends(admin_required)
)
Creates a new user and returns the user's information. User Role : ADMIN = 1 STAFF = 2 GUEST = 3

Args: - params (User): The user data including osm_id and role.

Returns: - Dict[str, Any]: A dictionary containing the osm_id of the newly created user.

Raises: - HTTPException: If the user creation fails.

delete_user

def delete_user(
    osm_id: int,
    user_data: API.auth.AuthUser = Depends(admin_required)
)
Deletes a user based on the given osm_id.

Args: - osm_id (int): The OSM ID of the user to delete.

Returns: - Dict[str, Any]: A dictionary containing the deleted user information.

Raises: - HTTPException: If the user with the given osm_id is not found.

login_url

def login_url(
    request: starlette.requests.Request
)
Generate Login URL for authentication using OAuth2 Application registered with OpenStreetMap. Click on the download url returned to get access_token.

Parameters: None

Returns: - login_url (dict) - URL to authorize user to the application via. Openstreetmap OAuth2 with client_id, redirect_uri, and permission scope as query_string parameters

my_data

def my_data(
    user_data: API.auth.AuthUser = Depends(login_required)
)
Read the access token and provide user details from OSM user's API endpoint, also integrated with underpass .

Parameters:None

Returns: user_data User Role : ADMIN = 1 STAFF = 2 GUEST = 3

read_user

def read_user(
    osm_id: int,
    user_data: API.auth.AuthUser = Depends(staff_required)
)
Retrieves user information based on the given osm_id. User Role : ADMIN = 1 STAFF = 2 GUEST = 3

Args: - osm_id (int): The OSM ID of the user to retrieve.

Returns: - Dict[str, Any]: A dictionary containing user information.

Raises: - HTTPException: If the user with the given osm_id is not found.

read_users

def read_users(
    skip: int = 0,
    limit: int = 10,
    user_data: API.auth.AuthUser = Depends(staff_required)
)
Retrieves a list of users with optional pagination.

Args: - skip (int): The number of users to skip (for pagination). - limit (int): The maximum number of users to retrieve (for pagination).

Returns: - List[Dict[str, Any]]: A list of dictionaries containing user information.

update_user

def update_user(
    osm_id: int,
    update_data: API.auth.routers.User,
    user_data: API.auth.AuthUser = Depends(admin_required)
)
Updates user information based on the given osm_id. User Role : ADMIN = 1 STAFF = 2 GUEST = 3 Args: - osm_id (int): The OSM ID of the user to update. - update_data (User): The data to update for the user.

Returns: - Dict[str, Any]: A dictionary containing the updated user information.

Raises: - HTTPException: If the user with the given osm_id is not found.

Classes

User

class User(
    /,
    **data: 'Any'
)

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/

A base class for creating Pydantic models.

Attributes: class_vars: The names of the class variables defined on the model. private_attributes: Metadata about the private attributes of the model. signature: The synthesized __init__ [Signature][inspect.Signature] of the model.

__pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
__pydantic_core_schema__: The core schema of the model.
__pydantic_custom_init__: Whether the model has a custom `__init__` function.
__pydantic_decorators__: Metadata containing the decorators defined on the model.
    This replaces `Model.__validators__` and `Model.__root_validators__` from Pydantic V1.
__pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to
    __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
__pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
__pydantic_post_init__: The name of the post-init method for the model, if defined.
__pydantic_root_model__: Whether the model is a [`RootModel`][pydantic.root_model.RootModel].
__pydantic_serializer__: The `pydantic-core` `SchemaSerializer` used to dump instances of the model.
__pydantic_validator__: The `pydantic-core` `SchemaValidator` used to validate instances of the model.

__pydantic_extra__: A dictionary containing extra values, if [`extra`][pydantic.config.ConfigDict.extra]
    is set to `'allow'`.
__pydantic_fields_set__: The names of fields explicitly set during instantiation.
__pydantic_private__: Values of private attributes set on the model instance.

Ancestors (in MRO)

  • pydantic.main.BaseModel

Class variables

model_computed_fields
model_config
model_fields

Static methods

construct

def construct(
    _fields_set: 'set[str] | None' = None,
    **values: 'Any'
) -> 'Self'

from_orm

def from_orm(
    obj: 'Any'
) -> 'Self'

model_construct

def model_construct(
    _fields_set: 'set[str] | None' = None,
    **values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Args: _fields_set: A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used. values: Trusted or pre-validated data dictionary.

Returns: A new instance of the Model class with validated data.

model_json_schema

def model_json_schema(
    by_alias: 'bool' = True,
    ref_template: 'str' = '#/$defs/{model}',
    schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
    mode: 'JsonSchemaMode' = 'validation'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.

Args: by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications mode: The mode in which to generate the schema.

Returns: The JSON schema for the given model class.

model_parametrized_name

def model_parametrized_name(
    params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args: params: Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns: String representing the new class where params are passed to cls as type variables.

Raises: TypeError: Raised when trying to generate concrete names for non-generic models.

model_rebuild

def model_rebuild(
    *,
    force: 'bool' = False,
    raise_errors: 'bool' = True,
    _parent_namespace_depth: 'int' = 2,
    _types_namespace: 'dict[str, Any] | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args: force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns: Returns None if the schema is already "complete" and rebuilding was not required. If rebuilding was required, returns True if rebuilding was successful, otherwise False.

model_validate

def model_validate(
    obj: 'Any',
    *,
    strict: 'bool | None' = None,
    from_attributes: 'bool | None' = None,
    context: 'Any | None' = None
) -> 'Self'
Validate a pydantic model instance.

Args: obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises: ValidationError: If the object could not be validated.

Returns: The validated model instance.

model_validate_json

def model_validate_json(
    json_data: 'str | bytes | bytearray',
    *,
    strict: 'bool | None' = None,
    context: 'Any | None' = None
) -> 'Self'
Usage docs: https://docs.pydantic.dev/2.9/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args: json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns: The validated Pydantic model.

Raises: ValidationError: If json_data is not a JSON string or the object could not be validated.

model_validate_strings

def model_validate_strings(
    obj: 'Any',
    *,
    strict: 'bool | None' = None,
    context: 'Any | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.

Args: obj: The object containing string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns: The validated Pydantic model.

parse_file

def parse_file(
    path: 'str | Path',
    *,
    content_type: 'str | None' = None,
    encoding: 'str' = 'utf8',
    proto: 'DeprecatedParseProtocol | None' = None,
    allow_pickle: 'bool' = False
) -> 'Self'

parse_obj

def parse_obj(
    obj: 'Any'
) -> 'Self'

parse_raw

def parse_raw(
    b: 'str | bytes',
    *,
    content_type: 'str | None' = None,
    encoding: 'str' = 'utf8',
    proto: 'DeprecatedParseProtocol | None' = None,
    allow_pickle: 'bool' = False
) -> 'Self'

schema

def schema(
    by_alias: 'bool' = True,
    ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'

schema_json

def schema_json(
    *,
    by_alias: 'bool' = True,
    ref_template: 'str' = '#/$defs/{model}',
    **dumps_kwargs: 'Any'
) -> 'str'

update_forward_refs

def update_forward_refs(
    **localns: 'Any'
) -> 'None'

validate

def validate(
    value: 'Any'
) -> 'Self'

Instance variables

model_extra
Get extra fields set during validation.

Returns: A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields_set
Returns the set of fields that have been explicitly set on this model instance.

Returns: A set of strings representing the fields that have been set, i.e. that were not filled from defaults.

Methods

copy

def copy(
    self,
    *,
    include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
    exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
    update: 'Dict[str, Any] | None' = None,
    deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.

!!! warning "Deprecated" This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)

Args: include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns: A copy of the model with included, excluded and updated fields as specified.

dict

def dict(
    self,
    *,
    include: 'IncEx | None' = None,
    exclude: 'IncEx | None' = None,
    by_alias: 'bool' = False,
    exclude_unset: 'bool' = False,
    exclude_defaults: 'bool' = False,
    exclude_none: 'bool' = False
) -> 'Dict[str, Any]'

json

def json(
    self,
    *,
    include: 'IncEx | None' = None,
    exclude: 'IncEx | None' = None,
    by_alias: 'bool' = False,
    exclude_unset: 'bool' = False,
    exclude_defaults: 'bool' = False,
    exclude_none: 'bool' = False,
    encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
    models_as_dict: 'bool' = PydanticUndefined,
    **dumps_kwargs: 'Any'
) -> 'str'

model_copy

def model_copy(
    self,
    *,
    update: 'dict[str, Any] | None' = None,
    deep: 'bool' = False
) -> 'Self'
Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#model_copy

Returns a copy of the model.

Args: update: Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. deep: Set to True to make a deep copy of the model.

Returns: New model instance.

model_dump

def model_dump(
    self,
    *,
    mode: "Literal['json', 'python'] | str" = 'python',
    include: 'IncEx | None' = None,
    exclude: 'IncEx | None' = None,
    context: 'Any | None' = None,
    by_alias: 'bool' = False,
    exclude_unset: 'bool' = False,
    exclude_defaults: 'bool' = False,
    exclude_none: 'bool' = False,
    round_trip: 'bool' = False,
    warnings: "bool | Literal['none', 'warn', 'error']" = True,
    serialize_as_any: 'bool' = False
) -> 'dict[str, Any]'
Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args: mode: The mode in which to_python should run. If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. include: A set of fields to include in the output. exclude: A set of fields to exclude from the output. context: Additional context to pass to the serializer. by_alias: Whether to use the field's alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError]. serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns: A dictionary representation of the model.

model_dump_json

def model_dump_json(
    self,
    *,
    indent: 'int | None' = None,
    include: 'IncEx | None' = None,
    exclude: 'IncEx | None' = None,
    context: 'Any | None' = None,
    by_alias: 'bool' = False,
    exclude_unset: 'bool' = False,
    exclude_defaults: 'bool' = False,
    exclude_none: 'bool' = False,
    round_trip: 'bool' = False,
    warnings: "bool | Literal['none', 'warn', 'error']" = True,
    serialize_as_any: 'bool' = False
) -> 'str'
Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic's to_json method.

Args: indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. context: Additional context to pass to the serializer. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError]. serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns: A JSON string representation of the model.

model_post_init

def model_post_init(
    self,
    _BaseModel__context: 'Any'
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.